Caspase 8 small interfering RNA prevents acute liver failure in mice.
نویسندگان
چکیده
A major concern in therapy of acute liver failure is protection of hepatocytes to prevent apoptosis and maintain liver function. Small interfering RNA (siRNA) is a powerful tool to silence gene expression in mammalian cells. To evaluate the therapeutic efficacy of siRNA in vivo we used different mouse models of acute liver failure. We directed 21-nt siRNAs against caspase 8, which is a key enzyme in death receptor-mediated apoptosis. Systemic application of caspase 8 siRNA results in inhibition of caspase 8 gene expression in the liver, thereby preventing Fas (CD95)-mediated apoptosis. Protection of hepatocytes by caspase 8 siRNA significantly attenuated acute liver damage induced by agonistic Fas (CD95) antibody (Jo2) or by adenovirus expressing Fas ligand (AdFasL). However, in a clinical situation the siRNAs most likely would be applied after the onset of acute liver failure. Therefore we injected caspase 8 siRNA at a time point during AdFasL- and adenovirus wild type (Adwt)-mediated liver failure with already elevated liver transaminases. Improvement of survival due to RNA interference was significant even when caspase 8 siRNA was applied during ongoing acute liver failure. In addition, it is of particular interest that caspase 8 siRNA treatment was successful not only in acute liver failure mediated by specific Fas agonistic agents (Jo2 and AdFasL) but also in acute liver failure mediated by Adwt, which is an animal model reflecting multiple molecular mechanisms involved in human acute viral hepatitis. Consequently, our data raise hope for future successful application of siRNA in patients with acute liver failure.
منابع مشابه
GENE THERAPY In vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice
Although studies have shown increased evidence of death receptor–driven apoptosis in intestinal lymphoid cells, splenocytes, and the liver following the onset of polymicrobial sepsis, little is known about the mediators controlling this process or their pathologic contribution. We therefore attempted to test the hypothesis that the hydrodynamic administration of small interfering RNA (siRNA) ag...
متن کاملIn vivo delivery of caspase-8 or Fas siRNA improves the survival of septic mice.
Although studies have shown increased evidence of death receptor-driven apoptosis in intestinal lymphoid cells, splenocytes, and the liver following the onset of polymicrobial sepsis, little is known about the mediators controlling this process or their pathologic contribution. We therefore attempted to test the hypothesis that the hydrodynamic administration of small interfering RNA (siRNA) ag...
متن کاملSilencing of caspase-8 and caspase-3 by RNA interference prevents vascular endothelial cell injury in mice with endotoxic shock.
OBJECTIVES Septic shock and sequential multiple organ failure remain the cause of death in septic patients. Vascular endothelial cell apoptosis may play a role in the pathogenesis of the septic syndrome. Caspase-8 is presumed to be the apex of the death receptor-mediated apoptosis pathway, whereas caspase-3 belongs to the "effector" protease in the apoptosis cascade. Synthetic small interfering...
متن کاملSuppression of apoptosis in the liver by systemic and local delivery of small-interfering RNAs.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by double-stranded RNA. RNAi was shown to allow transient or stable knockdown of gene expression in a broad range of species and has been used successfully for functional genomic screens in mammalian cells and Caenorhabditis elegans. Standard therapeutic use of RNAi in clinical settings in humans has been hampered...
متن کاملIn vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice
Oxidative stress contributes to the progression of acute liver failure (ALF). Transcription factor nuclear factor-erythroid 2-related factor (Nrf2) serves as an endogenous regulator by which cells combat oxidative stress. We have investigated liver damage and the balance between death and survival signaling pathways in concanavalin A (ConA)-mediated ALF using in vivo siRNA delivery targeting Ke...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 13 شماره
صفحات -
تاریخ انتشار 2003